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COMMENT

On the sign of S for thermal conduction

S Simons

Department of Applied Mathematics, Queen Mary College, Mile End Road, London E1
4NS, UK

Received 5 April 1979

Abstract. It is shown that during thermal conduction the second time-derivative of the
entropy will be negative if a certain inequality concerning the temperature variation of the
specific heat and that of the thermal conductivity is satisfied. Consideration is given to when
the inequality will hold.

Over the past few years there has been considerable interest in showing that during the
passage to equilibrium for various isolated systems, the second time derivative of the
entropy S can never become positive, that is

d%$/dr*<0 (1)

(Harris 1967, 1968a, b, 1971, Maass 1970, McElwain et al 1969, Mihaljan 1978,
Pritchard 1975, Pritchard et al 1974, Ray 1978, Rouse and Simons 1976, Shear 1968,
Simons 1969, 1970, 1971a, b, 1972, 1976, West 1978, Yao 1971). Among the systems
considered was that of thermal conduction (Simons 1971b). Here the result (1) was
proved for the situation where the thermal conductivity K and the specific heat C were
both assumed to be independent of temperature T, since this independence greatly
simplifies the theoretical treatment. However, there remains, of course, to be consi-
dered the physically realistic situation when both K and C depend on 7, and it is this
which we treat below. A further motivation for this work is the incorrect conclusion
recently reached by Mihaljan (1978), based on an incomplete analysis of the problem,
that inequality (1) will only hold for thermal conduction if K is proportional to T2,

Consider heat flow in the x direction through an isolated system bounded by the
planes x =a and x = b. Then the temperature T(x, ) within the system satisfies the
conduction equation

CT,=(KT,), (2)
with boundary conditions
Txla = Txlb = O; (3)

where the subscript notation.implies differentiation with respect to the corresponding
variable. The rate of entropy production is given by Landau and Lifshitz (1959) in the
form

b
K
S, = j FTi dx,
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and hence

. 2K K

§=§,= j [T2TT,x+T27‘, T(;)] dx. @)
Now

3 (2K 2K 2K 8 (2K

T \A\F2 XT> TTx T, xx ( ) 2

8x<T2T AR b o T +aT T? TiTe

On integrating this from x = g to x = b and using the boundary conditions (3), we may
eliminate the first term in the integrand of equation (4) to yield

. broK K
s=—f [FTXH-(F) TTi]T, dx

--[ L ) 10+ [K(35) | i)
= I c{ T2 1= KT(T2>TT"+ Kigz) t=77 | TiTwpdx 5

on substituting for 7, from equation (2). Now, for any function f(T'), we have, on
integrating ‘by parts’ and using the boundary conditions (3),

b 1 b
[ AT ax =3 [ TADNT ax (6)

and this may be used to eliminate the term in equation (5) involving T2T... Thus we

obtain
o] (o [S5), Y, ) e

CT? c\1%)r 3\c\T¥r CT

and since the coefficient of T3 in this equation is of uncertain sign, we cannot as yet
prove inequality (1). To progress further it is now necessary to assume that both C and
K are proportional to some power of T'; that is, we take

C=C,T¢ and K = K,T", (8)
when equation (7) yields

s"=—(K3/co)J [2T22T2 & (ck—k>+3k —3c —2)T* 4T dx. )

a

We now use Schwarz’s inequality in the form
2

b
J flx)g(x)dx

b b
[ TP ax | fgwoF ax=
taking f(x) = T* <" 'T,, and glx)= T* %272 This gives

b b b 2
J T3k-e=212, dxj Y A dx?“ T2k==3T .T? de

a a

_ (2k—-c -3)2[Jb T2k—c—4T4xt dxr

>

9

on using equation (6). Since

b
J‘ T2k—c~4Ti dx>0,

a
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this yields

b 2 .b
J’ Tzk-c—zTix de(Zk“gc“:J*) J' T2k——c—4Ti dx,

and substituting from here for the first term in the integrand of equation (9) gives (since
this term is positive)

. Kik- +c+3)(°
§<Kolk=20)k+c 3)J' T?*~7*T? dx. (10)
9CjO a
As generally ¢ =0 it follows that inequality (1) will hold if
—(c+3)=sk=<2c (11)

For k outside this interval, whether or not inequality (1) holds remains undecided.

It follows from inequality (11) that in many—if not most—situations, inequality (1)
will be satisfied. Thus it will hold for non-conductors, both at high temperatures where
¢=0and k = -1, and also at low temperatures where ¢ =3 and k =2 or 3, depending
on the principal phonon scattering mechanism (Ziman 1960). However, there is at least
one situation for which the inequality (11) is not satisfied. This is the low-temperature
situation for an infinite perfect crystal when Umklapp processes predominate. Under
these circumstances, K(T)x T" exp(a/T) with & > 0 (Ziman 1960), and it is clear that
for sufficiently small T this will correspond to K+(T) being proportional to T* with
k <—(c+3), and thus inequality (11) will not then be satisfied. Whether or not
inequality (1) is then true remains as yet an open question.
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